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ABSTRACT
Visual Commonsense Reasoning (VCR) calls for explanatory rea-
soning behind question answering over visual scenes. To achieve
this goal, a model is required to provide an acceptable rationale
as the reason for the predicted answers. Progress on the bench-
mark dataset stems largely from the recent advancement of Vision-
Language Transformers (VL Transformers). These models are first
pre-trained on some generic large-scale vision-text datasets, and
then the learned representations are transferred to the downstream
VCR task. Despite their attractive performance, this paper posits
that the VL Transformers do not exhibit visual commonsense, which
is the key to VCR. In particular, our empirical results pinpoint sev-
eral shortcomings of existing VL Transformers: small gains from
pre-training, unexpected language bias, limited model architecture
for the two inseparable sub-tasks, and neglect of the important
object-tag correlation. With these findings, we tentatively suggest
some future directions from the aspect of dataset, evaluation metric,
and training tricks. We believe this work could make researchers
revisit the intuition and goals of VCR, and thus help tackle the
remaining challenges in visual reasoning.
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Rationale:

Q: What are [Person3] and [Person4] doing?

a1) They might be on a date. 

a2) They are dancing. 

a3) They are trying to comfort [Person1]. 

a4) Enjoying lunch together. 



Q
A

R

r1) They are walking along the deck of a ship

together and [Person3] is wearing a fancy dress.

r2) They are both dressed really nicely.

r3) [Person1] is wearing a suit and backpack, while

[Person2] is wearing a dress.

r4) They are sitting alone chatting off in the corner of

a dark environment at a table.



Q
A

a1) is right

because…

Figure 1: An exemplar of VCR. The task is composed of two
sub-tasks: Q→A and QA→R, where the challenge mainly lies
in the cross-modal reasoning from the latter.
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1 INTRODUCTION
The intersection of vision and language areas has spawned nu-
merous multi-modal tasks, such as image captioning [11, 15, 44]
and Visual Question Answering (VQA) [1, 2, 8] over the past few
years. Among these, Visual Commonsense Reasoning (VCR) [46]
has recently drawn increasing attention from researchers due to its
challenging nature. Beyond answering visual questions as conven-
tional VQA does (Q→A), VCR further requires the model to pick
the rationale for the Q→A process (where the visual commonsense
is), namely QA→R (see Figure 1).
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Vision-Language Transformer
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Figure 2: Pipeline of Vision-Language Transformers for VCR. Q→A and QA→R share the same pipeline where only the input
query (𝑄𝑌 ) and response (𝑅𝑆) are slightly different.

VCR is taken as an important proxy for visual commonsense
understanding. To deal with this difficult task, some initial ef-
forts have been devoted to designing task-specific model archi-
tectures [42, 46, 49]. These models utilize the contextualized query-
region affinity captured by well-designed attention mechanisms
as evidence, to reason the plausibility between responses and im-
ages. Subsequently, Vision-Language Transformers (VL Transform-
ers) [28, 34, 35] swept the multi-modal vision-language domain
and rapidly prevailed over the competing counterparts on the VCR
Leaderboard1. VL Transformers first pre-train BERT stylemodels on
generic vision-language datasets (such as Conceptual Captions [32])
for task-agnostic representation learning, which is then transferred
to the downstream VCR for both Q→A and QA→R.

Though the state-of-the-art keeps advancing, the reasoning ca-
pability of these VL Transformers still remains debatable. As an
improvement of VQA, VCR is promising not simply because the
performance of traditional VQA benchmarks has saturated, but
it is expected to uncover the complex reasoning behind answer
prediction, i.e., rationale prediction [46]. On the flip side, the key to
the success of VL Transformers, namely pretext training objectives
(e.g., masked language modeling), deviates substantially from the
reasoning goal. In particular, typical pretext tasks usually focus
either on the reconstruction from partially masked elements, or the
coherence between the two given modalities. However, why these
modality matching-driven objectives aid visual reasoning on VCR
remains less persuasive.

Given the above concern, in this work, we empirically find that
VL Transformers perform well mostly in those instances requiring
less reasoning while failing on difficult ones (refer to Figure 3). We
then conduct an in-depth investigation into this problem and obtain
the following findings:

• Limited benefits are transferred from pre-training to VCR.
Pre-training on large-scale vision-language datasets enhances
some downstream tasks like image retrieval with significant
performance margin [4, 28]. In contrast, VCR improves lit-
tle from these carefully designed pre-training steps. We at-
tribute this finding to two reasons: 1) domain shift between

1https://visualcommonsense.com/leaderboard/.

pre-training and VCR fine-tuning, and 2) weak reasoning of
these pretext objectives.

• Language bias prevents the model from cross-modal rea-
soning. The language shortcut between textual queries and
responses leads the model to make decisions based on the
text modality only [45], especially for QA→R.When it comes
to cases that require visual reasoning, the model is misled to
leverage the bias between text due to their overwhelming
co-occurrence than that of image and text.

• The architecture does not lend itself to a holistic solution for
both Q→A and QA→R. Based on the definition and intuition
of VCR, the Q→A and QA→R should be made consistent
rather than being treated separately [22]. Unfortunately, ex-
isting VL Transformer models are limited in handling these
two sub-tasks with consistency.

• The unique tag labels are somehow under-utilized by current
VL Transformers. As demonstrated in Figure 1, the tag (such
as ‘[person3]’) defines an exclusive link between an object
label and a certain bounding box. It is essential to consider
such relationships for proper reasoning rather than treating
them as being independent.

This paper shows that the above drawbacks are common among
some representative VL Transformers. Nevertheless, it is not our
goal to propose a novel method to close the gap. Instead, the key
contribution of this work lies in its insights for developing new
methods, which helps bypass certain limitations. Towards this, we
also outline several potential research directions given the analysis
of these problems.

2 PRELIMINARY
2.1 Problem Formulation
Given a natural image and a textual question, Visual Commonsense
Reasoning (VCR) aims to predict the answer to this question as well
as the explanation of the answering process. Compared to VQA, the
questions in VCR are made more challenging and the models are
expected to provide the rationale behind the question answering.
Accordingly, VCR focuses mainly on higher-order cognition and
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Rationale:

r1) [Person3]’s facial expression makes her appear jealous, and

eyes look like she may cry.

r2) [Person3] would have to be angry if she was willing to throw

her valuables at a basketball hoop.

r3) [Person2]’s facial expressions give her away that she is

jealous she has not been chosen to sing.

r4) [Person2] has barely touched [cellphone1] and she has a scowl

on her face.

Image

Rationale:

r4) Facial expressions are often a good indicator of how a person

is feeling inside.

r2) It is commonly hostile to make such a face and refuse to shake

a hand when offered.

r3) People fake smile when they are uncertain about something.

r1) Girls rarely smile so broadly unless they like the guy they are

smiling at.

QA R

a1
)

is
rig

h
t

b
ecau

se…

a3) [Person3] feels shocked and scared. 

a2) [Person3] feels good. 

Q: How does [Person3] feel?

a1) [Person3] feels jealous.

a4) [Person3] feels very depressed.

Q: Why is [Person3] smiling in an 

odd way?

a1) She is trying to be friendly

even though she does not feel it.

a2) [Person3] has said a joke that she

does not think is funny.

a3) [Person3] is pretending she is real. 

a4) She is probably amused by what

she is seeing.

Q A
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Figure 3: Failure cases from VILLA. The input to QA→R consists of the correct answer (blue one from Q→A), rather than the
predicted answer (red one from Q→A) following the default setting. It can be seen that the model makes mistakes on cases
calling for fine-grained reasoning.

commonsense understanding of images. Specifically, a typical VCR
model can be formulated as follows,

𝑅𝑆 = argmax
𝑅𝑆𝑖 ∈RS

𝑓 (𝐼 ,𝑄𝑌, 𝑅𝑆𝑖 |Θ), (1)

where 𝐼 and 𝑄𝑌 are the given image and query, respectively; RS
denotes the response set where 𝑅𝑆𝑖 is the 𝑖-th element, Θ denotes
the involved optimized parameters, and the function 𝑓 predicts a
compatible score based on the given inputs. In practice, VCR is often
decomposed into the following two multiple-choice sub-tasks:
Question answering (Q→A) – For the given image 𝐼 and a corre-
sponding question 𝑄 ⇐ 𝑄𝑌 , the model is required to choose the
right answer 𝐴 ⇐ 𝑅𝑆 from a set of answer choices A ⇐ RS.
Answer justification (QA→R) – Similar to the inputs of Q→A,
the model in this stage takes the correct answer 𝐴 as the additional
input (𝑄 +𝐴 ⇐ 𝑄𝑌 ), and is expected to select the right rationale
𝑅 ⇐ 𝑅𝑆 from a set of rationale choices 𝑅 ⇐ RS.

2.2 VL Transformer Pre-training
The past few years have witnessed the rapid development of VL
Transformers. In addition to the large-scale datasets, the pretext
pre-training tasks or objectives are the key to the success of these
models. We summarize three typical widely applied tasks, i.e., Cross-
modal Masked Language Modeling (MLM), Masked Region Classi-
fication (MRC), and Image-Text Matching (ITM).
MLM originates from theMLM task in BERT [7]. The key difference
is that the visual clues are incorporated in VL Transformers for
capturing the dependencies between linguistic and visual contents,

L𝑀𝐿𝑀 = −E(𝑇,𝐼 ) ∈𝐷 log 𝑃𝜃 (𝑡𝑚 |𝑇\𝑚, 𝐼 ), (2)

where 𝜃 represents the parameters of the VL Transformer, 𝑡𝑚 and
𝑇\𝑚 denote themasked and the remaining tokens, respectively. Each
pair (𝑇, 𝐼 ) ∈ 𝐷 is composed of a text 𝑇 and an image 𝐼 sampled
from a vision-language dataset 𝐷 .

MRC is a dual task of MLM. It learns to predict the semantic class
of each masked object based on the corresponding text and its
surrounding visual objects. To pre-train this, the cross-entropy
loss (𝐶𝐸) between the output distribution normalized by a softmax
function 𝑠 (𝑖 ′𝑛) and class label 𝑐 (𝑖𝑛) for the masked region 𝑖𝑛 is
employed,

L𝑀𝑅𝐶 = E(𝑇,𝐼 ) ∈𝐷

𝑁∑︁
𝑛=1

𝐶𝐸 (𝑠 (𝑖
′
𝑛), 𝑐 (𝑖𝑛)), (3)

where 𝑠 (𝑖 ′𝑛) denotes the VL Transformer output of 𝑖𝑛 and 𝑁 is the
number of the objects detected from image 𝐼 .
ITM is similar to the Next Sentence Prediction task utilized in
BERT [7]. Given an image-text pair as input, the Transformer must
predict whether the image and text are aligned, e.g., whether the
text describes the image,

L𝐼𝑇𝑀 = −E(𝑇,𝐼 ) ∈𝐷 [𝑦 log 𝑠𝜃 (𝑇, 𝐼 )
+(1 − 𝑦) log(1 − 𝑠𝜃 (𝑇, 𝐼 ))],

(4)

where 𝑦 is the ground truth and 𝑠𝜃 is the score function to measure
the alignment probability of (𝑇, 𝐼 ).

2.3 Fine-tuning on VCR
Input Formats – Figure 2 illustrates the input format of typical
VL Transformers in VCR. Like in other VL tasks, the inputs are
composed of a special classification token [CLS], the corresponding
text, a separation token [SEP] between the two modalities, the
given image, and an end token [END]. Specifically, pertaining to
the textual input, the concatenation of 𝑄 and 𝐴𝑖 with a [SEP] is
applied for the Q→A sub-task; while for QA→R, the usual way is to
concatenate 𝑄 , ground-truth answer 𝐴 and the candidate rationale
𝑅𝑖 .
Optimization – For fine-tuning on VCR, the final output of the
[CLS] token is utilized to predict whether the given answer or
rationale is the correct choice. The VL Transformer is trained in
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Table 1: Pre-training gains from VILLA on five cross-modality tasks.

Pre-train NLVR2 Retrieval VQA VCR Validation

dev test-P Text Image Q→A QA→R Q→AR

× 50.9 51.2 80.5 65.4 68.4 72.6 75.1 54.7
✓ 78.4 79.3 86.6 74.7 73.6 73.9 76.1 56.5

Δ 27.5 28.1 6.1 9.3 5.2 +1.3 +1.0 +1.8

Table 2: Pre-training gains from UNITER on three tasks.

Pre-train Retrieval VCR Validation

Text Image Q→A QA→R Q→AR

× 83.3 73.9 71.5 72.9 52.2
✓ 94.3 85.8 72.7 74.5 54.4

Δ 11.0 11.9 +1.2 +1.6 +2.2

Table 3: Pre-training gain from Vil-BERT.

Pre-train Image Retrieval VCR Validation

R@1 R@5 Q→A QA→R Q→AR

× 45.5 76.8 69.3 71.0 49.5
✓ 58.2 84.9 72.4 74.5 54.0

Δ 12.7 8.1 +3.1 +3.5 +4.5

an end-to-end fashion by minimizing the multi-class cross-entropy
loss between the prediction for each response and the ground truth
label. During inference, models are also comprehensively evaluated
with the classification accuracy on the two sub-tasks, namely the
holistic Q→AR task (the accuracy set interaction of Q→A and
QA→R).

Note that there are often two separable models for the two sub-
tasks. The logical connection between these two is surprisingly
ignored in the existing literature.

3 EXPERIMENTAL RESULTS AND FINDINGS
Our findings are based on four popular SOTA VL-Transformers
- UNITER [4], ViLBERT [28], VL-BERT [35] and VILLA [12]. We
employed these four representative models for two reasons: 1) they
cover a wide variety of different pre-training datasets, objectives,
and architectures, and 2) the models are evaluated on VCR and
the released codes can be rerun for reproduction. After examining
several failure cases in Figure 3, we found that these models often
made mistakes on challenging queries. As the pretext tasks used
by VL Transformers are mostly matching goal-driven rather than
reasoning-oriented, we argue that they fail to do visual reasoning
over commonsense scenes, which is the key to VCR. As a result,
the superior performance is somewhat misleading. To explore this
problem, we conducted extensive experiments and summarize some
key findings below (Note that some experimental results have been

moved to supplementary material due to space limitation.). This
section elaborates on the following research questions:

• RQ1 –Howmuch does the pre-training help the downstream
VCR task?

• RQ2 – Is the image modality really helpful for ‘visual rea-
soning’ in VCR?

• RQ3 –Are there any correlations between the two separately
trained models for the two sub-tasks?

• RQ4 – Is it desirable to ignore the distinct connection be-
tween tags and objects?

3.1 Limited Gain from Pre-training
Pre-training is of vital importance to downstream VL tasks, wherein
the pretext training objectives play an important part. These pretext
objectives, as detailed in Section 2.2, focus mainly on the conven-
tional recognition ability. Nevertheless, a good VCR model should
be made cognition-aware and capable of visual reasoning. In light
of this, the contribution of pre-training to VCR remains somewhat
less trustworthy. As shown in Table 1, 2 and 3, the gains from
pre-training for these matching-oriented tasks, e.g., cross-modal
retrieval [48], are quite substantial (more than 10 points in Table 2).
By contrast, when it comes to VCR, the performance gain is limited
to 0 ∼ 2 points. It illustrates that current VL Transformers ben-
efit much more from the architecture itself than the pre-training
objectives.

There are two possible explanations for this. First, these pretext
objectives are specially designed for simple modality reconstruction
and cross-modal matching. However, VCR demands fine-grained
visual reasoning which cannot be achieved by the above means.
Second, the domain shift between pre-training and VCR fine-tuning
makes the transfer difficult. The images in the VCR dataset are
about movie plots which are distinctive from the pre-training image
captioning datasets [32].

We also investigated the convergence of three VL Transformers
and display the results in Figure 4. It shows that pre-training boosts
models with a good initialization point. With more training steps,
the advantage from pre-training decays until the models with and
without pre-training reach a similar level of performance.

3.2 Language Bias
It is well-known that VQA has been long affected by the language
bias problem [13, 17]. It refers to the correlation shortcut between
textual questions and answers. To study whether VCR is afflicted
with this problem, we tested two settings: VL Transformers respec-
tively removing query and image (see Figure 2), and observed the
results. Table 4 shows that for Q→A, the model variants without
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Figure 4: Convergence analysis of three VL Transformers with and without pre-training.

query and without image lead to similar performance degrada-
tion. However, for the sub-task of QA→R, there exists a significant
performance gap between these two variants, i.e., the difference
between the former variant and the full model is over 2× more
than that of the latter. It is mainly because of the language shortcut
between textual inputs (One such example can be seen in Figure 1,
that only the correct r1 contains the [Person3] tag.). VL Transform-
ers tend to utilize such bias for prediction rather than performing
visual reasoning.

To further validate this hypothesis, we then explored the atten-
tion weight distribution of these models. In general, the attention
weights express how much other elements contribute to the learn-
ing of the current element. We first estimated the learned attention
weights from UNITER [4] and VILLA [12] based upon the [CLS] to-
ken, as the output from [CLS] is leveraged for predicting the correct
response. It can be observed in Figure 5 that the two models pay too
much attention to the textual rationale and answer elements (except
for the [CLS] token itself in the second layer) while focusing less
on the visual objects. Since the goal of VCR is to pursue reasoning
with images, models making decisions without the involvement of
vision seem less desirable.

Thereafter, we further evaluated the attention weights from one
modality to the other, and illustrate the results in Figure 6. We can
observe that the language modality sees almost only itself, espe-
cially for the QA→R sub-task. It further validates that the language
bias dominates the prediction of both sub-tasks, and QA→R is af-
fected more. By contrast, the vision modality looks more balanced
with respect to its attention distribution. This modality bias issue is
further reflected by two examples in Figure 7, where it can be seen
that each modality mainly focuses on its own encoded tokens.

3.3 Sparse Correlation between Two Models
Figure 2 shows that VL Transformers take the Q→A and QA→R as
two independent processes. In other words, there are two separate
models with similar architectures and training protocols. However,
separately treating Q→A and QA→R deteriorates the visual scene
understanding, considering that these two processes share a com-
mon goal [21, 22]. In the following, we investigated the correlation
between these two models from two angles.

Table 4: Performance of three VL Transformers within three
variants: full model, without query and without image. Note
that Q→AR tells the interaction between correctly predicted
Q→A and QA→R instances.

Model Q→A QA→R Q→AR

UNITER 74.4 76.9 57.5
w/o query 59.3 (-15.1) 57.2 (-19.7) 34.5 (-23.0)
w/o image 59.6 (-14.8) 68.6 (-8.3) 41.0 (-16.5)

VL-BERT 72.6 74.0 54.0
w/o query 56.4 (-16.2) 53.5 (-20.5) 30.8 (-23.2)
w/o image 58.8 (-13.8) 66.0 (-8.0) 38.9 (-15.1)

VILLA 75.4 78.7 59.5
w/o query 60.6 (-14.8) 58.8 (-19.9) 36.2 (-23.3)
w/o image 60.5 (-14.9) 71.0 (-7.7) 43.1 (-16.4)

2 4 6 8 10 12

CLS

Question

Answer

Rationale

Objects

2 4 6 8 10 12

CLS

Question

Answer

Rationale

Objects

UNITER VILLA

Figure 5: Attention distribution from the token of [CLS]. We
empirically selected even layers for demonstration.

One intuitive idea is to study the overlapped instances between
Q→A and QA→R, see Figure 9. Note that the query to QA→R
is the given question concatenated with the right answer. Given
the same question, on the one hand, we observed that around 3/4
of correctly predicted answers lead to the right rationale (from
round box A to round box R). This shows that some answers are at
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Figure 6: The attentionweight distribution from themodality
of each row to the modalities of columns.

(a) Sample obtained from the validation set with an instance ID of 5431.

(b) Sample obtained from the validation set with an instance ID of 9686.

Q→A QA→R

QA→RQ→A

Figure 7: Qualitative results of the attention map from the
last self-attention layer in VL-BERT. Each row represents the
attention weight of a given input token with respect to all
tokens. We use the yellow lines to separate textual tokens
from visual tokens.

least not predicted based on the same reasoning as humans. On the
other hand, we found that a large proportion of wrongly predicted
answers (3/4) correspond to the right rationale (from the square
box A to round box R). We suspect that one possible reason is due

ViLBERT VL-BERT VILLA

66

68

70

72

74

76

V
al

 A
cc

Q→A

 Separate

 Share

ViLBERT VL-BERT VILLA
68

70

72

74

76

78

V
al

 A
cc

QA→R

 Separate

 Share

Figure 8: Performance comparison of threemodels with shar-
ing and separate parameters.

Table 5: Performance of three VL Transformers within three
variants: full model, without tags, and with the random re-
placement of tags.

Model Q→A QA→R Q→AR

UNITER 74.4 76.9 57.5
w/o tag 68.6 (-5.8) 72.8 (-4.1) 50.5 (-7.0)
repl. tag 73.5 (-0.9) 76.3 (-0.6) 56.4 (-1.1)

VL-BERT 72.6 74.0 54.0
w/o tag 65.7 (-6.9) 69.5 (-4.5) 46.1 (-7.9)
repl. tag 72.5 (-0.1) 73.9 (-0.1) 53.9 (-0.1)

VILLA 75.4 78.7 59.5
w/o tag 69.7 (-5.7) 74.8 (-3.9) 52.5 (-7.0)
repl. tag 74.5 (-0.9) 78.2 (-0.5) 58.5 (-1.0)

to the shortcut learning between correct answers and rationales, as
discussed in Section 3.2 because the input to QA→R contains the
ground-truth answer instead of the predicted one.

As discussed before, existing methods all employ two models
to separately tackle Q→A and QA→R. This makes us wonder,
are there any differences between these two models? Or does the
separation of the two sub-tasks really allow the twomodels to better
deal with answering and reasoning? To answer this question, we
conducted tests with the same model for both sub-tasks. Figure 8
illustrates that when employing the same model for these two, the
model performance is slightly increased. We speculate that the
cause of this phenomenon is the doubling of the dataset employed
for training. This experiment, on the other hand, shows that VL
Transformers do not differentiate these two sub-tasks, despite the
fact that the latter one requires more visual commonsense.

3.4 Incompleteness of Tag Handling
In VCR, the questions, answers and rationales are written in a
mixture of rich natural language as well as detection tags, like ‘[per-
son1 ]’: this helps to provide a direct link between the textual
description of an object and its corresponding image region. Most
VL Transformers, however, ignore this information for modeling
simplicity. The typical handling of the tag label is to directly utilize
the text input, e.g., ‘[person1 ]’⇒person (a neutral name).
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Figure 9: Proportion of correctly predicted instances from three VL Transformers and their intersection of four states in VCR.
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Figure 10: Average attention weights and MRR value with respect to each tag for different VL Transformer layers (1 to 12). We
use three typical VL Transformers for demonstration. Top: Q→A; Bottom: QA→R.

To investigate the importance of these tag labels, we first re-
moved the tag input and observed the results in Table 5. It can be
seen that the model performance degrades to some extent. The
key reason is that the input sentences lack important subjects, and
therefore makes VL Transformers confusing. We then randomly
replaced each tag with another one, e.g., ‘[table]’⇒ ‘[person]’. The
results in Table 5 demonstrate that the models show only minor de-
terioration. This illustrates that existing handling for tags is largely
limited. That is, randomly replacing tags barely impacts the perfor-
mance though the link between each tag and object is deliberately
broken.

Like in Section 3.2, we also studied the attention distribution,
especially the attention weights attached to each given tag. In
particular, we used two metrics to quantify this effect:

AvgAttention is adopted to count the averaged attention values
between the given tag and the visual object to which it referred
(upper bound is 1.0),

𝑎𝑡𝑡𝑙 =
1∑𝑛

𝑖=1𝑚𝑖

𝑛∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑠𝑐𝑜𝑟𝑒 (𝑡𝑖 𝑗 , 𝑜𝑖 𝑗 ), (5)

where 𝑠𝑐𝑜𝑟𝑒 (𝑡𝑖 𝑗 , 𝑜𝑖 𝑗 ) denotes the attention score from the tag token
𝑡𝑖 𝑗 to its corresponding visual object 𝑜𝑖 𝑗 in layer 𝑙 , 𝑛 and𝑚𝑖 are the
number of samples in the validation set and the number of tags
contained in each sample, respectively.

MRR is employed to estimate the rank of the true object based
on the predicted attention values for each tag (upper bound is 1.0),

𝑚𝑟𝑟𝑙 =
1∑𝑛

𝑖=1𝑚𝑖

𝑛∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

1
𝑟𝑎𝑛𝑘 (𝑡𝑖 𝑗 , 𝑜𝑖 𝑗 )

, (6)

where 𝑟𝑎𝑛𝑘 (𝑡𝑖 𝑗 , 𝑜𝑖 𝑗 ) is the ranking of the 𝑠𝑐𝑜𝑟𝑒 (𝑡𝑖 𝑗 , 𝑜𝑖 𝑗 ) among the
attention scores between 𝑡𝑖 𝑗 and all objects (5 to 13 per image).
As shown in Figure 10, for all three VL Transformers, both values
are pretty low in relation to their upper bound (1.0). This result
demonstrates that the link between the tag and its attached object
is almost nonexistent. As a result, whether the VL Transformers
perform reasoning remains doubtful since such an important corre-
lation is ignored.

4 WHAT TO DO NEXT?
The above findings tell us that existing VL Transformers do not
offer a good solution for visual commonsense understanding. As
good as the recognition capability is, a VCR model is expected to
be endowed with more reasoning strengths. In what follows, we
outline several possible directions worth exploring in the next:

Dataset – Curating more challenging datasets which can cir-
cumvent the shortcut modeling problem encountered by existing
VL Transformers. In addition, probing other means of visual com-
monsense understanding instead of giving explanations to question
answering is also of great potential, e.g., the collection of spatial or
attribute commonsense.
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Evaluation Metric – Designing specific metrics for quantifying
the reasoning capability of models, for which the current vanilla
accuracy metric is limited in its form. Besides time-intensive subjec-
tive evaluations, we can also gain insights from the text generation
tasks like machine translation [6] and image captioning [39].

Pre-training Task – Making the pre-training objectives focus
more on cognition and understanding. In particular, how to enhance
VL Transformers with reasoning strengths is an interesting path for
improving downstream VCR. One possible attempt is to incorporate
large-scale knowledge into pre-training pretext tasks.

De-biasing – Guiding models with suitable de-biasing tricks
can help overcome the language bias problem. It is worth noting
that the bias problem is more challenging than VQA because of
the spurious correlation between a single query and response. In
contrast to VCR, the bias in the sister VQA domain results from the
statistical shortcut between question type and answers2, whereby
some trivial loss re-balancing tricks can be employed [14].

Model Architecture – Developing suitable model architectures
to take advantage of the unique tag-object label and the two-step
visual commonsense understanding. For instance, we can approach
Q→A and QA→R simultaneously with collaboration, where the
common image information provides an essential proxy to achieve
this goal.

Prompting on Large Language Models – One last promising
future direction is to prompt the pre-trained large language models,
such as ChatGPT3. A typical approach is to decode the image into
text, and then the generalization capability of these largemodels can
be leveraged to provide the correct explanation for visual questions.
Nevertheless, the captioning quality of another proxy model is still
under questioning.

5 RELATEDWORK
5.1 Vision-Language Transformers
The success of Transformers in the field of Natural Language Pro-
cessing (NLP) [7] and Computer Vision (CV) [3, 9, 18, 43] brings a
lot of progress for multi-modal vision and language tasks [27, 29, 33,
38, 51]. Based on how the vision and language branches are fused,
current VL Transformers can be roughly categorized into single-
stream (e.g., UNIMO [20] and SOHO [16]) and dual-stream cross-
modal Transformers (e.g., LXMERT [37] and ALBEF [19]). A typical
VL Transformer model often employs the pretrain-then-finetune
learning schema: the model is first pre-trained on large vision-text
datasets and then fine-tuned on downstream tasks by transferring
their rich representations from pre-training. Specifically, the pre-
text tasks play a vital role in pre-training, where masked language
modeling, masked region prediction, and image-text matching are
extensively studied. The fine-tuning step mirrors that of the BERT
model [7], which includes a task-specific input, output, and objec-
tive. The pre-trained model is thereafter optimized to maximize the
performance on the corresponding vision-and-language task. The
VL Transformers mainly help in the following three groups of down-
stream tasks: cross-modal matching, cross-modal reasoning, and
vision language generation [10]. The first group focuses on learning

2The question type is often referred to the first few words of the given question, e.g.,
how many. Answers in VQA datasets are mostly composed of a few keywords.
3https://chat.openai.com/

cross-modal correspondences between vision and language, such
as image text retrieval and visual referring expression. Reasoning
ones require VL Transformers to perform language reasoning based
on visual scenes, such as VQA. The last group aims to generate
the targets of one modality given the other as input [5, 37]. The
desired visual or textual tokens are decoded in an auto-regressive
generation manner.

5.2 Visual Commonsense Reasoning
Recently, multimodal tasks have garnered increasing research atten-
tion [23–26, 30, 31, 36, 40, 41], with a notable example being Visual
Question Answering (VQA). However, conventional VQA models
often face limitations due to their black-box reasoning capabilities.
To move one step further, VCR was presented to supplement VQA
by inferring the rationale behind the question-answering process.
Some initial work designs specific architectures to address VCR
for the purpose of finer-grained visual understanding. For instance,
R2C [46] performs three inference steps - grounding, contextualiza-
tion, and reasoning, to move towards cognition-level understanding
step by step. Inspired by the neuron connectivity of the human
brain, CCN [42] designs a connective cognition network to globally
and dynamically integrate the local visual neuron connectivity. For
explicit cross-modal representation learning, syntactic information
is incorporated into the visual reasoning and natural language un-
derstanding [50]. Recent progress on the VCR leaderboard is mostly
derived from VL Transformers. For example, UNITER [4] utilizes
a single-stream encoder and four elaborate pre-training tasks to
learn universal image-text representations for various downstream
multi-modal tasks. ViLBERT [28] employs a dual-stream fusion
encoder with co-attention layers to model the inter-modality inter-
actions. MERLOT [47] first learns commonsense representations of
multi-modal events by pre-training over millions of videos and then
transfers them to the target images in the VCR dataset. Despite the
impressive performance achieved by these VL Transformer mod-
els, whether they truly possess visual commonsense remains an
intriguing yet under-explored question.

6 CONCLUSION
This paper recognizes several limitations of utilizing existing VL
Transformers to VCR, which takes an essential step towards visual
commonsense understanding. Though the results on the bench-
mark dataset are impressive, we argue that these numbers are less
trustworthy in terms of visual reasoning – the key ingredient of
VCR. On the flip side, this ‘all in Transformer’ wave may mislead
the VCR research in the wrong direction, preventing the commu-
nity from pursuing models that are reasoning-aware. To the best
of our knowledge, we are the first to comprehensively study this
problem in literature though we strongly believe we are not the
only one afflicted with it. With the discovery of this problem and
the tentative proposal for several future directions, we hope this
work can help motivate more interesting and plausible ideas for
visual commonsense reasoning in the future.
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