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ABSTRACT

Textual response generation is an essential task for multimodal

task-oriented dialog systems. Although existing studies have

achieved fruitful progress, they still suffer from two critical

limitations: 1) focusing on the attribute knowledge but ignoring the

relation knowledge that can reveal the correlations between different

entities and hence promote the response generation, and 2) only

conducting the cross-entropy loss based output-level supervision but

lacking the representation-level regularization. To address these

limitations, we devise a novel multimodal task-oriented dialog

system (named MDS-S2). Specifically, MDS-S2 first simultaneously

acquires the context related attribute and relation knowledge

from the knowledge base, whereby the non-intuitive relation

knowledge is extracted by the 𝑛-hop graph walk. Thereafter,

considering that the attribute knowledge and relation knowledge

can benefit the responding to different levels of questions, we

design a multi-level knowledge composition module in MDS-S2

to obtain the latent composed response representation. Moreover,

we devise a set of latent query variables to distill the semantic

information from the composed response representation and

the ground truth response representation, respectively, and thus

conduct the representation-level semantic regularization. Extensive

experiments on a public dataset have verified the superiority of our

proposed MDS-S2. We have released the codes and parameters to

facilitate the research community.
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1 INTRODUCTION

In recent years, task-oriented dialog systems have penetrated into

many aspects of our daily life, such as restaurant reserving and

ticket booking. According to the report of Salesforce1, roughly

68% of customers tend to interact with the intelligent dialog

agents for their quick responses rather than waiting for the human

services. Considering its value, a surge of researches are dedicated

to developing task-oriented dialog systems. Early studies in this

research line focus on the pure text-based dialog system [8, 28],

overlooking that both the user and the agent may need to express

themselves with certain visual clues (i.e., images). For example, as

shown in Figure 1, the user needs to utilize the image to express

his/her desired shopping mall in the utterance 𝑢7, while the agent
needs to use images to illustrate special dishes for the user in

𝑢4. Therefore, recent research attention has been swifted to the

multimodal task-oriented dialog systems.

In fact, multimodal task-oriented dialog systems mainly contain

two tasks [2]: the textual response generation and the image

response selection. Considering that the former is more challenging

and its performance is still far from satisfactory, many researchers

focus on this task for multimodal task-oriented dialog systems [16,

19]. Despite the favorable performance obtained by existing

efforts [2, 4, 16, 19, 21, 27, 37], they mainly suffer from two

critical limitations. 1) Ignoring the relation knowledge. In

the context of multimodal task-oriented dialog systems, there is

always a knowledge base containing abundant attribute-value

pairs as well as images of a large number of entities. Previous

studies focus on exploiting the attribute knowledge of entities,

but neglecting the relation knowledge residing in the knowledge

1https://startupbonsai.com/chatbot-statistics.
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Figure 1: Illustration of a multimodal dialog system between

a user and an agent. “u” refers to the utterance.

base, which can capture the relations between entities, and

benefit the response reasoning and generation. For example,

as shown in Figure 1, the agent can generate the appropriate

response (i.e., 𝑢8) only conditioned on the relation knowledge

of Inaniwa Yosuke
𝑛𝑒𝑎𝑟
−−−−→ Wisma Atria

𝑑𝑜𝑚𝑎𝑖𝑛
−−−−−−−→ mall. 2) Lacking

the representation-level regularization. Previous studies only

adopt the token-level cross-entropy loss to regulate the generated

response to be similar to the ground truth response. This may

be insufficient for the task whose input (i.e., text and image) and

output (i.e., text) present apparent heterogeneity. In fact, they

ignore the potential representation-level regularization between

the context-knowledge composed response representation and

the ground truth response representation, which can enhance the

composed response representation learning and hence improve the

response generation performance.

To address these two limitations, in this work, we aim to

conduct the research of textual response generation in multimodal

task-oriented dialog systems by integrating the dual semantic

knowledge (i.e., attribute and relation knowledge) and the

representation-level regularization. However, this is non-trivial due

to the following three challenges. 1) Different from the attribute

knowledge, the relation one is not straightforwardly provided

by the knowledge base that only contains attribute-value pairs

and images of entities. Hence, how to mine the related relation

knowledge with respect to the given multimodal context is a

crucial challenge. 2) In a sense, the intuitive attribute knowledge

is beneficial to response generation of simple questions (e.g.,

“Can you get their phone number for me?”), while the relation

knowledge is helpful for responding relatively more complicated

questions (e.g., “Can you help me look for a hotel nearby

Singapore River?”). Accordingly, how to effectively compose the

multimodal context with the dual semantic knowledge and thus

generate the proper response is another vital challenge. And 3)

ideally, we expect that the representation-level regularization can

project the context-knowledge composed response representation

and the ground truth response representation into the same

meaningful semantic space. In this way, we can yield meaningful

composed response representation that can further enhance the

response generation. Therefore, how to fulfil the meaningful

representation-level semantic regularization is another challenge.

To address the aforementioned challenges, we devise a novel

dual semantic knowledge composed multimodal dialog system,

MDS-S2 for short, where the generative pretrained language model

BART is adopted as the backbone. As demonstrated in Figure 2,

the proposed model consists of three pivotal components: dual

semantic knowledge acquisition, multi-level knowledge composition,

and representation-regularized response generation. To be specific,

the first component aims to acquire the context related dual

semantic knowledge: attribute knowledge and relation knowledge.

In particular, the related relation knowledge is uncovered by the

𝑛-hop graph walk over the whole knowledge base. Thereafter, the

second component is devised to compose the multimodal context

and the acquired dual semantic knowledge to obtain the latent

composed response representation. Specifically, considering that

the attribute knowledge and relation knowledge can facilitate

the responding to questions with different complexity levels of

user intentions, the attribute knowledge is first composed at the

input token level, and the relation knowledge is then adaptively

composed at the intermediate representation level. Subsequently,

the last component targets at enhancing the proper textual response

generation with the additional representation-level regularization.

In particular, we design a set of to-be-learned latent query

variables to project the composed response representation and

the ground truth response representation into the same semantic

space with the cross-attention mechanism. Moreover, to fully

utilize the representation-level regularization, we also design a

semantic-enhanced response decoder. Notably, the decoder can

adaptively incorporate the regularized composed response semantic

representation, apart from the original multi-level knowledge

composed response representation. Extensive experiments on a

public dataset have demonstrated the superiority of our proposed

MDS-S2. Our main contributions can be summarized as follows:

• We propose a novel dual semantic knowledge composed

multimodal dialog system. To the best of our knowledge, we

are among the first to exploit the relation knowledge residing

in the knowledge base and integrate the representation-level

semantic regularization for the textual response generation in

multimodal task-oriented dialog systems.

• We present the dual semantic knowledge acquisition component

to select the context related knowledge from both the attribute

and relation perspectives. Moreover, we devise the multi-level

knowledge composition component, which can compose the

attribute and relation knowledge at the input token level and the

intermediate representation level, respectively.

• We devise a set of to-be-learned latent variables to con-

duct the representation-level semantic regularization, and the

semantic-enhanced response decoder to promote the textual

response generation. As a byproduct, we release the codes and

involved parameters to facilitate the research community2.

2https://sigir2023.wixsite.com/anonymous7357.
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Figure 2: Illustration of the proposed model.

2 RELATEDWORK

Traditional task-oriented dialog systems [11, 29] resort to a pipeline

structure and mainly contain four functional components: natural

language understanding, dialogue state tracking, policy learning,

and natural language generation. To be more specific, the natural

language understanding component is used to classify the user

intention, and then the dialogue state tracking component aims

to track the immediate state, based on which the policy learning

component can predict the following action. Thereafter, the natural

language generation component exhibits the response through

generation methods [8, 14] or predefined templates. Although

pipeline methods have attained impressive results, they may suffer

from error propagation [10] on the sequential components.

With the flourishing development of deep neural networks,

recent studies are centered on exploring end-to-end task-oriented

dialog systems. Early end-to-end studies focus on single-modal (i.e.,

textual modality) task-oriented dialog systems. Although these

studies have made tremendous strides, they neglect that both the

user and agent may need to leverage certain images to convey

their needs or services. Accordingly, Saha et al. [27] investigated

the multimodal task-oriented dialog systems with two critical

tasks: textual response generation and image response selection,

and presented a multimodal hierarchical encoder-decoder model

(MHRED). In addition, they released a large-scale multimodal dialog

dataset in the fashion domain, which considerably stimulates the

progress on multimodal task-oriented dialog systems. Beyond

this, several studies further probe the semantic relation in the

multimodal dialog context and integrate the knowledge based on

the framework of MHRED [1, 4, 16, 21, 22, 37]. More recently,

several studies draw on Transformer [30] to propel the development

of multimodal dialog systems [2, 9, 20]. Although these studies

achieve remarkable performance, they only utilize the attribute

knowledge and overlook the representation-level regularization.

Beyond that, in this paper, we worked on investigating the dual

semantic knowledge composition and representation-level semantic

regularization to improve the response generation performance.

3 MODEL

3.1 Problem Formulation

Suppose we have a set of 𝑁 training dialog pairs D =
{(C1,R1), (C2,R2), · · · , (C𝑁 ,R𝑁 )}. Thereinto, each dialog pair

consists of a multimodal dialog context C𝑖 and a ground truth

response R𝑖 . In particular, each utterance in C𝑖 may involve both

textual and visual modalities, as the user/agent may utilize certain

related images to promote the request/response expression. In

light of this, each multimodal dialog context C𝑖 can be further

represented by two modalities: the sequence of tokens T𝑖 = [𝑡𝑖𝑔]
𝑁 𝑖
𝑇

𝑔=1
derived by concatenating all the textual utterances in the context

and a set of images V𝑖 = {𝑣𝑖𝑗 }
𝑁 𝑖
𝑉

𝑗=1 involved in the context, where 𝑡𝑖𝑔
refers to the 𝑔-th token and 𝑣𝑖𝑗 represents the 𝑗-th image of C𝑖 . 𝑁

𝑖
𝑇

and 𝑁 𝑖
𝑉 are the total number of tokens and images, respectively.

Notably, 𝑁 𝑖
𝑉 = 0 (i.e.,V𝑖 = ∅), if there is no image involved in C𝑖 .

The ground truth response R𝑖 can be represented as R𝑖 = [𝑟 𝑖𝑛]
𝑁 𝑖
𝑅

𝑛=1,
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where 𝑟 𝑖𝑛 stands for the𝑛-th token and𝑁 𝑖
𝑅 is the number of tokens in

the response. In addition, we have a knowledge base including both

the semantic and visual knowledge of 𝑁𝐾 entities K = {𝑒𝑝 }
𝑁𝐾
𝑝=1

to assist in response generation. To be specific, each entity 𝑒𝑝 is

associated with a set of attribute-value pairs A𝑝 (e.g., {<location:

Orchard Road>, <domain: food>}) and a set of imagesI𝑝 that exhibit

the visual information of the entity (e.g., showing the appearance

of Esplanade Park).

In a sense, we aim to devise a novel model F which can generate

the appropriate textual response based on the given multimodal

dialog context and the knowledge base as follows,

F (C𝑖 ,K|𝚯𝐹 ) → R𝑖 , (1)

where 𝚯𝐹 denotes the model parameters.

3.2 Dual Semantic Knowledge Acquisition

Since knowledge plays a vital role in the response generation

of task-oriented dialog systems, we first conduct the knowledge

acquisition for the given multimodal context. Considering the

semantic knowledge is pivotal to capturing the user’s intentions [33,

36, 37], we focus on selecting two kinds of semantic knowledge: at-

tribute knowledge and relation knowledge. Thereinto, the attribute

knowledge, which is widely used, refers to the attribute-value pairs

of entities mentioned directly in the context. In a sense, the attribute

knowledge can be useful for responding the simple questions, like

“Can you get their phone number for me?”. In addition to the

attribute knowledge, beyond previous methods, we also incorporate

the relation knowledge contained in the knowledge base, which

helps to uncover the correlation between entities and respond to

relatively more complicated questions, like “Can you help me look

for a hotel nearby Esplanade Park to stay at?”. To answer this

complicated question, we need to first identify which entities are

near the entity “Esplanade Park”, and then recognize which nearby

entity is a “hotel” with the attribute knowledge of nearby entities.

Therefore, we devise the dual semantic knowledge acquisition

component with two modules: attribute knowledge acquisition and

relation knowledge acquisition.

3.2.1 Attribute Knowledge Acquisition. Due to the multimodal

nature of the given dialog context, following the existingmethod [2],

we retrieve the related attribute knowledge according to both the

textual and visual context.

For the textual context, we directly judge which knowledge

entity is mentioned to obtain the textual context related knowledge

entities. Namely, if the knowledge entity 𝑒𝑝 appears in the textual

context, we will select the set of attribute-value pairs A𝑝 of it as

the relevant knowledge. In this way, we can collect the related

knowledge of textual context K𝐴
𝑡 = A𝑡

1 ∪ A𝑡
2 ∪ · · · ∪ A𝑡

𝑁 𝑡
𝑘

,

whereA𝑡
𝑚 is the set of attribute-value pairs of the𝑚-th mentioned

knowledge entity and 𝑁 𝑡
𝑘
is the total number of textual context

related knowledge entities.

Pertaining to the visual context, we resort to mining its visual

features to obtain the related entities in the knowledge base.

Specifically, we first utilize ViT-B/32 [6] to derive the visual features

of images in context C𝑖 and that of each entity in the knowledge

base K . Notably, similar to the visual context, each entity in the

knowledge base can be associated with multiple images. Thereafter,

for each image 𝑣 𝑗 in the visual contextV𝑖 , we calculate its visual

similarity3 with each image of each entity in the knowledge base

and regard the maximum image similarity as the entity similarity

with the given image. Notably, to guarantee the quality of the

retrieved knowledge, we only regard the entities whose similarity

with the given context image is larger than the threshold 𝜖 as the
related entities. Ultimately, by merging the attribute-value pairs of

all the visual context related entities, we obtain the visual context

related attribute knowledge as K𝐴
𝑣 = A𝑣

1 ∪ A𝑣
2 ∪ · · · ∪ A𝑣

𝑁 𝑣
𝑘
,

where A𝑣
𝑛 denotes the attribute-value pairs set of the 𝑛-th related

knowledge entity and 𝑁 𝑣
𝑘
is the total number of visual context

related knowledge entities.

3.2.2 Relation Knowledge Acquisition. To obtain the related

relation knowledge, we first cast the whole knowledge base K

into a directed knowledge graph G𝑎 = {E𝑎,R𝑎}. E𝑎 = {𝑒𝑞}
𝑁𝐾
𝑎

𝑞=1 is

the set of nodes, including two types of nodes (i.e., head and tail

nodes), where the head node refers to a knowledge entity, while the

tail node denotes an attribute value.𝑁𝐾
𝑎 is the total number of nodes.

R𝑎 = {𝑟𝑧 }
𝑁𝑅
𝑎

𝑧=1 is the edge set, where each 𝑟𝑧 refers to an attribute

type linking the head and tail nodes. 𝑁𝑅
𝑎 is the number of attribute

types in the knowledge base. Intuitively, each triplet (ℎ, 𝑟, 𝑡), where
ℎ, 𝑡 ∈ E𝑎 and 𝑟 ∈ R𝑎 , indicates that the attribute value of the

knowledge entity ℎ regarding the attribute type 𝑟 is 𝑡 . For example,

the triplet (Wisma Atria, location, Orchard Road) indicates that the

“location” of the entity “Wisma Atria” is at “Orchard Road”.

Thereafter, for the given multimodal dialog context, we first

identify the entities involved in the given context in the same

way as the attribute knowledge acquisition module. Then, for each

identified entity, we perform the 𝑛-hop graph walk over G𝑎 to

uncover the potential relations it involves. In particular, each hop

walk traverses a triplet (i.e., <𝑒, 𝑟, 𝑒>) and the 𝑛-hop graph walk

process will terminate when the last traversed node of the current

walk does not connect to any other nodes, or the number of walks

reaches the pre-defined maximum number (i.e., 𝑛). Finally, each
𝑛-hop graph walk yields a sequence of traversed triplets, which can

compose a high-order relation of the initial entity node. Formally,

we use a tuple to represent each relation, whose entries include the

sequence of traversed nodes and edges. For example, the high-order

relation 𝑒1
𝑟1
−−→ 𝑒2

𝑟2
−−→ 𝑒3 can be represented as [𝑒1, 𝑟1, 𝑒2, 𝑟2, 𝑒3].

In this vein, we can derive all the context related relation tuples

E𝑖𝐻 = {ℎ𝑖𝑞}
𝑁 𝑖
ℎ

𝑞=1, where each relation tuple ℎ𝑖𝑞 contains an arbitrary

number of entries and 𝑁 𝑖
ℎ
is the number of relation tuples.

3.3 Multi-level Knowledge Composition

As aforementioned, the attribute knowledge refers to the

attribute-value pairs of entities mentioned directly in the context,

whose role is straightforward in responding questions that contain

shallow user intentions. Meanwhile, the relation knowledge

uncovers the correlation between entities, which can benefit the

responding to questions that contain complex user intentions. In

light of this, we devise the multi-level knowledge composition

3Here, we use the cosine similarity.
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component with the shallow attribute knowledge composition

and complex relation knowledge composition. For simplicity, we

temporally omit the script 𝑖 that indexes the training samples.

3.3.1 Shallow Attribute Knowledge Composition. In this module,

we first extract the embeddings of the attribute knowledge and

multimodal context, respectively. As for the attribute knowledge,

we merge K𝐴
𝑡 and K𝐴

𝑣 as a whole K𝐴 = [K𝐴
𝑡 ,K

𝐴
𝑣 ]. Thereafter, we

treat the set of attribute-value pairs in K𝐴 as a sequence of tokens,

and feed it into the position-wise embedding layer of BART to

obtain the attribute knowledge embedding E𝑘 ∈ R𝑁𝐾 ×𝐷 , where𝑁𝐾

is the number of tokens in K𝐴 . In the same manner, we can obtain

the embedding for the given textual context T = [𝑡1, 𝑡2, · · · , 𝑡𝑁𝑇 ],

denoted as E𝑡 ∈ R
𝑁𝑇 ×𝐷 . For the given visual context, i.e., the set

of imagesV = {𝑣1, 𝑣2, · · · , 𝑣𝑁𝑉 }, we first utilize ViT-B/32 [6] (i.e.,

B𝑣 ) pretrained by CLIP [25] to encode each image 𝑣 𝑗 , and then

employ a fully connected layer and the layer normalization to get

each image embedding v̄𝑗 as follows,{
v𝑗 = B𝑣 (𝑣 𝑗 ), 𝑗 = 1, 2, · · · , 𝑁𝑉 ,

v̄𝑗 = 𝐿𝑁 (v�𝑗 W
𝑒
𝑣 + b𝑒𝑣),

(2)

where v𝑗 is the visual representation, extracted by ViT-B/32, of

the image 𝑣 𝑗 , and 𝐿𝑁 (·) refers to the layer normalization. W𝑒
𝑣 and

b𝑒𝑣 are the to-be-learned weight matrix and bias vector of the fully

connected layer, respectively. Finally, let E𝑣 = [v̄1; v̄2; · · · ; v̄𝑁𝑉 ]
� ∈

R
𝑁𝑉 ×𝐷 denote the embedding of the visual context.

Thereafter, to derive the attribute knowledge composed response

representation, we feed the embeddings of the attribute knowledge

and the multimodal context into the encoderB𝑒 of BART as follows,

T𝑡 = B𝑒 ( [E𝑘 , E𝑡 , E𝑣]), (3)

where T𝑡 ∈ R
𝑁𝑏×𝐷 is the attribute knowledge composed response

representation. 𝑁𝑏 = (𝑁𝐾 +𝑁𝑇 +𝑁𝑉 ) is the total number of tokens.

3.3.2 Complex Relation Knowledge Composition. In this module,

we further integrate the complex relation knowledge to refine the

above composed response representation. To be specific, we regard

each related relation tuple (i.e., ℎ𝑖𝑞) as a sequence of words and

feed it into the position-wise embedding layer of BART to get its

embedding Eℎ𝑞 ∈ R𝑁
𝑒
𝑞 ×𝐷 , where 𝑁 𝑒

𝑞 is the number of tokens in

ℎ𝑖𝑞 . Thereafter, we employ the encoder B𝑒 of BART to derive the

relation tuple representation as follows,

Tℎ𝑞 = B𝑒 (E
ℎ
𝑞 ), (4)

where Tℎ𝑞 ∈ R𝑁
𝑒
𝑞 ×𝐷 is the representation of the relation tuple ℎ𝑖𝑞 .

In fact, different relation tuples tend to play different roles

in enhancing the textual response generation. For example, as

shown in Figure 1, the relation tuple (Inaniwa Yosuke
𝑛𝑒𝑎𝑟
−−−−→Wisma

Atria
𝑑𝑜𝑚𝑎𝑖𝑛
−−−−−−−→ mall) conveys more vital clues in generating the

response 𝑢8 than (Inaniwa Yosuke
𝑛𝑒𝑎𝑟
−−−−→ Wisma Atria

𝑐𝑟𝑒𝑑𝑖𝑡𝑐𝑎𝑟𝑑𝑠
−−−−−−−−−−→

yes). Therefore, we resort to the cross-attention mechanism [30] to

emphasize relation tuples that are highly related to the composed

response representation and obtain the reorganized relation tuples

representation for the given attribute composed representation, due

to its superior performance in capturing the interaction relation

between two items [17, 18, 31, 32, 34]. Specifically, we treat the

composed response representation T𝑡 obtained in Eqn.(3) as the

query, and the relation tuple representations Tℎ𝑞 as the key and

value as follows,{
Q𝑚 = T𝑡W

𝑚
𝑄 ,K𝑚 = TℎW

𝑚
𝐾 ,V𝑚 = TℎW

𝑚
𝑉 ,

T̄ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q𝑚K�
𝑚)V𝑚,

(5)

where Tℎ = [t1
ℎ
, t2
ℎ
, · · · , t𝑁ℎ

ℎ
] ∈ R

𝑁ℎ×𝐷 denotes the initial

representation of all the related relation tuples, and t
𝑞
ℎ

=

𝑎𝑣𝑔(Tℎ𝑞 ) refers to the average pooling over the 𝑞-th relation tuple

representation Tℎ𝑞 obtained in Eqn.(4). W𝑚
𝑄 , W𝑚

𝐾 , and W𝑚
𝑉 are

weight matrices. Q𝑚 ∈ R𝑁𝑏×𝐷 , K𝑚 ∈ R𝑁ℎ×𝐷 and V𝑚 ∈

R
𝑁ℎ×𝐷 are the query, key, value matrices, respectively. 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·)

represents the softmax activation function, and T̄ℎ ∈ R𝑁𝑏×𝐷 stands

for the reorganized relation tuples representation for the given

attribute composed representation.

Next, to fulfill the relation knowledge composition, instead of

merely using the common residual operation [13], similar to [7],

we adopt the attention mechanism to adaptively fuse the attribute

knowledge composed response representation and the reorganized

relation tuples representation. The reason behind is that they may

contribute differently towards the ground truth response generation.

According to the attention mechanism, we have,⎧⎪⎪⎪⎨⎪⎪⎪⎩
H𝑡 = 𝑡𝑎𝑛ℎ(T𝑡W𝑡 + B𝑡 ),

Hℎ = 𝑡𝑎𝑛ℎ(T̄ℎWℎ + Bℎ),

[r𝑡 , rℎ] = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [H𝑡 ,Hℎ]a),

(6)

where W𝑡 and Wℎ are weight matrices, while B𝑡 and Bℎ are

bias matrices. r𝑡 ∈ R𝑁𝑏 and rℎ ∈ R𝑁𝑏 denote the normalized

confidence vectors for the attribute knowledge composed response

representation and the relation knowledge representation. Here,

the to-be-learned vector a ∈ R𝐷 can be interpreted as the query

“which part contributes more to the response generation”. Ultimately,

we reach the final multi-level knowledge composed response

representation T𝑐 ∈ R𝑁𝑏×𝐷 as follows,

T𝑐 = r𝑡 � T𝑡 + rℎ � T̄ℎ, (7)

where � represents the element-wise multiplication operation.

3.4 Representation-regularized Response
Generation

Towards the final response generation, one straightforward and

commonly used solution is to feed the composed response

representation into the BART decoder, and utilize the cross-entropy

loss to perform the output-level supervision. Although the method

is feasible, it only considers the output-level supervision, but

neglects the potential representation-level regularization. In fact,

we can guide the composed response representation learning with

the ground truth response representation. Therefore, we devise

the representation-regularized response generation component

with two key modules: representation-level semantic regularization

and semantic-enhanced response generation. The former aims

to promote the composed response representation learning

with a semantic regularization between the composed response

representation and the ground truth response representation. The

latter targets at generating the response with not only the original
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multi-level knowledge composed response representation but also

the regularized composed response semantic representation.

3.4.1 Representation-level Semantic Regularization. To conduct the

representation-level semantic regularization, we first introduce a

set of to-be-learned latent variable vectors as queries to interact

with the multi-level knowledge composed response representation

and the ground truth response representation, respectively, with the

goal of projecting them into the same semantic space and deriving

their semantic representations. Let P𝑔 = {p1𝑔, p
2
𝑔, · · · , p

𝑁𝑃
𝑔 } ∈

R
𝑁𝑃 ×𝐷 denote the latent variable matrix with 𝑁𝑃 variable vectors.

Then for deriving the multi-level knowledge composed response

semantic representation, we first employ the cross-attention

mechanism to distinguish informative representation dimensions,

where P𝑔 is regarded as the query, while the composed response

representation T𝑐 is treated as the key and value. Subsequently,

we utilize the multi-layer perceptron (MLP) [38] and the residual

operation to further enhance the representation generalization and

get the final composed response semantic representation as follows,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q𝑐 = P𝑔W

𝑐
𝑄 ,K𝑐 = T𝑐W

𝑐
𝐾 ,V𝑐 = T𝑐W

𝑐
𝑉 ,

T̄𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q𝑐K
�
𝑐 )V𝑐 ,

T̃𝑐 = T̄𝑐 + 𝑓 (T̄𝑐 ),

(8)

where the query Q𝑐 is projected from the P𝑔 , while the key K𝑐
and the value V𝑐 are projected from the multi-level knowledge

composed response representation. T̄𝑐 is the intermediate com-

posed response semantic representation. W𝑐
𝑄 , W

𝑐
𝐾 , and W𝑐

𝑉 are

to-be-learned weight matrices. 𝑓 (·) refers to the MLP network. T̃𝑐
is the final composed response semantic representation.

As for the ground truth response, we first obtain its embedding

matrix E𝑟 ∈ R𝑁𝑅×𝐷 by the position-wise embedding layer of BART,

where 𝑁𝑅 is the total number of its tokens. We then extract its

representation with the BART encoder B𝑒 as follows,

T𝑟 = B𝑒 (E𝑟 ), (9)

where T𝑟 ∈ R𝑁𝑅×𝐷 stands for the representation of the ground

truth response. Thereafter, similar to the composed response

semantic representation extraction in Eqn.(8), we resort to the

cross-attention mechanism, where we treat P𝑔 as the query, and

the ground truth response representation T𝑟 as both key and value.

Let T̃𝑟 be the obtained semantic representation of the ground truth

response via the cross-attention mechanism.

Subsequently, to promote the composed response representation

learning towards the response generation, we adopt the Frobenius

norm to regularize the composed response semantic representation

and the ground truth response semantic representation to be as

similar as possible as follows,

L𝑟 = | |T̃𝑟 − T̃𝑐 | |
2
𝐹 , (10)

where | | · | |2𝐹 is the Frobenius norm.

3.4.2 Semantic-enhanced Response Generation. Considering that

the user may particularly pay more attention to the entity’s

attributes to obtain the desired response [4], we adopt the revised

BART decoder (i.e., B̄𝑑 ) introduced by [2] as our decoder, which

can distinguish the informative tokens of the related attribute

knowledge and adaptively utilize the knowledge to promote the

textual response generation. Compared with the standard BART

decoder, the revised BART decoder additionally introduces a

dot-product knowledge-decoder sub-layer between the masked

multi-head self-attention mechanism sub-layer and multi-head

encoder-decoder attention mechanism sub-layer. To be specific,

we feed the knowledge composed response representation T𝑐 and

the attribute knowledge embedding E𝑘 into B̄𝑑 as follows,

z̄𝑑𝑒𝑐𝑗 = B̄𝑑 (T𝑐 , E𝑘 , 𝑦1, 𝑦2, · · · , 𝑦 𝑗−1), (11)

where z̄𝑑𝑒𝑐𝑗 is the latent representation for generating the 𝑗-th token

learned by the revised BART decoder B̄𝑑 .

Thereafter, different from previous studies that directly predict

the response token distribution based on z̄𝑑𝑒𝑐𝑗 , we further incorpo-

rate the regularized composed response semantic representation

to promote the textual response generation. Considering that

different semantic dimensions can contribute differently towards

the response generation, we also employ the cross-attention

mechanism to obtain the reorganized composed response semantic

representation for z̄𝑑𝑒𝑐𝑗 . Specifically, we treat the latent represen-

tation z̄𝑑𝑒𝑐𝑗 as the query, and the composed response semantic

representation T̃𝑐 as the key and value as follows,{
q𝑑 = z̄𝑑𝑒𝑐𝑗

�W𝑑
𝑄 ,K𝑑 = T̃𝑐W

𝑑
𝐾 ,V𝑑 = T̃𝑐W

𝑑
𝑉 ,

t̂𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (q�
𝑑
K�
𝑑
)V𝑑 ,

(12)

where q𝑑 is the query vector, while K𝑑 and V𝑑 are the key and value

matrices, respectively.W𝑑
𝑄 ,W

𝑑
𝐾 , andW

𝑑
𝑉 are weight matrices. t̂𝑐 is

the refined composed response semantic representation. Thereafter,

we can obtain the semantic-enhanced latent representation by

fusing z̄𝑑𝑒𝑐𝑗 and t̂𝑐 as follows,

ẑ𝑑𝑒𝑐𝑗 = 𝐿𝑁 (z̄𝑑𝑒𝑐𝑗 + t̂𝑐 ), (13)

where ẑ𝑑𝑒𝑐𝑗 is the semantic-enhanced latent representation for

generating the 𝑗-th response token. Specifically, we can derive

the 𝑗-th token probability distribution based on ẑ𝑑𝑒𝑐𝑗 as follows,

ŷ𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ẑ𝑑𝑒𝑐𝑗
�W𝑦 + b𝑦), (14)

where W𝑦 and b𝑦 denote the weight matrix and bias vector,

respectively. ŷ𝑗 represents the predicted probability distribution for

the 𝑗-th token of the response. Notably, to avoid error accumulation,

in practice, we utilize the semantic representation of ground

truth response T̃𝑟 instead of the composed response semantic

representation T̃𝑐 during the training phase.

Ultimately, following existing methods [16, 22], we use the cross

entropy loss [12] to fulfill the output-level supervision as follows,

L𝐶𝐸 = −
1

𝑁𝑅

∑𝑁𝑅

𝑛=1
𝑙𝑜𝑔(ŷ𝑛 [𝑡∗]), (15)

where ỹ𝑛 [𝑡∗] denotes the element of ỹ that corresponds to the 𝑛-th
token of the ground truth response R, and 𝑁𝑅 is the number of

tokens in R. Notably, the loss is defined for a single sample. In

the end, we can reach the final objective function for the textual

response generation as follows,

L = 𝜆L𝐶𝐸 + 𝛾L𝑟 + 𝛽 | |𝚯𝐹 | |
2
𝐹 , (16)

1523



Dual Semantic Knowledge Composed Multimodal Dialog Systems SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

where 𝜆, 𝛾 , and 𝛽 are the non-negative hyper-parameters. 𝚯𝐹

denotes the set of parameters of the proposed MDS-S2.

4 EXPERIMENT

4.1 Experiment Setting

Dataset. Previous studies mainly evaluate their models on the

public dataset MMD constructed by Saha et al. [27] from the fashion

domain. However, similar to [2], we did not evaluate our model on

this dataset owing to the fact that MMD only allows the attribute

knowledge acquisition. In contrast, we utilized the public dataset

MMConv [15], which supports the knowledge acquisition from

both the attribute and relation perspectives. The MMConv dataset

consists of 5, 106 conversations between users and agents covering

five domains: Food, Hotel, Nightlife, Shopping mall, and Sightseeing.

Thereinto, the number of single-modality and multi-modality

dialogues are 751 and 4, 355, respectively, where the average number

of turns are 7.1 and 7.9. Besides, the knowledge base contains 1, 771
knowledge entities, where each entity is equipped with a set of

attribute-value pairs and a few images. The average number of

attribute-value pairs and images are 13.7 and 64.3, respectively.
Implementation Details. Following the original setting in

MMConv, we divided dialogues into three chunks: 3, 500 for

training, 606 for validation, and 1, 000 for testing. Similar to existing

studies [2, 4], we regarded each utterance of agents as a ground

truth response and employed its former two-turn utterances as the

given context. We adopted the pretrained BART-large4 [35] model

with 12 layers for the encoder and decoder, respectively. As for

optimization, we utilized the adaptive moment estimation optimizer

and settled the learning rate as 1𝑒-5. In addition, we fine-tuned the

proposed MDS-S2 based on the training and validation dataset with

100 epochs, and reported the performance on the testing dataset.

Besides, we implemented our model by Pytorch [24] and deployed

all experiments on a server equipped with 8 NVIDIA 3090 GPUs.

Following existing studies [2, 22], we utilized BLEU-𝑁 [23] where

𝑁 ranges from 1 to 4, and Nist [5] as evaluation metrics.

4.2 Model Comparison (RQ1)

To verify the effectiveness of our proposed MDS-S2, we chose

the following state-of-the-art models on multimodal task-oriented

dialog systems as baselines.

• MHRED [27] is the first study on the multimodal task-oriented

dialog systems with a hierarchical encoder and a decoder.

Thereinto, the hierarchical encoder consists of two levels of

the gated recurrent units (GRU) [3], modeling the utterance

and context, respectively. This baseline does not consider the

knowledge as well as the representation-level regularization.

• KHRED [2] is extended from MHRED by integrating the

attribute knowledge. Specifically, this method employs the

memory network to encode the attribute knowledge, and then

uses the GRU-based decoder to generate the textual response.

• LARCH [21] employs a multimodal hierarchical graph to encode

the given dialog context, where each word, image, sentence,

utterance, dialog pair, and the session is regarded as a node. In

addition, considering the pivotal role of knowledge in multimodal

4https://huggingface.co/facebook/bart-large.

Table 1: Performance comparison among different methods

in terms of BLEU-N (%) and Nist. “Improve.↑”: the relative

improvement by our model over the best baseline. The best

results are in boldface, and the second best are underlined.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Nist

MHRED 15.02 6.66 4.24 2.94 0.9529
KHRED 18.29 8.28 4.98 3.36 1.1189
LARCH 20.86 11.33 7.58 5.58 1.3400
MATE 30.45 22.06 17.05 13.41 2.3426
UMD 31.14 21.87 17.12 13.82 2.5290
TREASURE 34.75 24.82 18.67 14.53 2.4398
DKMD 39.59 31.95 27.26 23.72 4.0004
MDS-S2 41.40 32.91 27.74 23.89 4.2142

Improve.↑ 4.57% 3.00% 1.76% 0.72% 5.34%

dialog systems, this method integrates the attribute knowledge

with a memory network.

• MATE [16] first resorts to the Transformer network to explore

the semantic relation between the textual context and the visual

context, and thus enhances the context representation. Thereafter,

the method utilizes the Transformer-based decoder to generate

the textual response.

• UMD [4] utilizes a hierarchy-aware tree encoder to capture

the taxonomy-guided attribute-level visual representation, and

a multimodal factorized bilinear pooling layer to obtain the

utterance representation.

• TREASURE [37] presents an attribute-enhanced textual encoder,

which integrates the attribute knowledge into the utterance

representation. Besides, the method adopts a graph attention

network to capture the semantic relation among utterances and

obtain the context representation.

• DKMD [2] presents a dual knowledge-enhanced generative

pretrained language model, where BART is adopted as the

backbone. In particular, the method only explores the textual

and visual context related attribute knowledge, overlooking the

relation knowledge and the representation-level regularization.

Table 1 summarizes the performance comparison among

different methods with respect to different evaluation metrics. From

this table, we can draw the following observations. 1) Our proposed

MDS-S2 consistently surpasses all the baselines, exhibiting the

superiority of the proposed network. In a sense, this suggests

that it is reasonable to integrate the multi-level knowledge

composition as well as the representation-level regularization.

2) Our proposed MDS-S2 outperforms all the baselines that

only consider the attribute knowledge (i.e., DKMD, TREASURE,

UMD, LARCH, and KHRED), which indicates the advantage of

simultaneously incorporating both the attribute knowledge and

relation knowledge in multimodal task-oriented dialog systems.

3) MHRED gets the worst performance compared to other methods.

This may be due to the fact that MHRED overlooks both the

dual semantic knowledge (i.e., attribute and relation knowledge)

and the representation-level regularization. And 4) both MDS-S2

and DKMD exceed other baselines, which confirms the benefit

of exploiting the generative language model in the context of

multimodal task-oriented dialog systems.
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Figure 3: Comparison between our MDS-S2 and DKMD on two testing dialog pairs. “GT-R” refers to the ground truth response.

To intuitively verify the effectiveness of the proposed MDS-S2,

we randomly selected two testing dialog pairs, and exhibited

the responses generated by the MDS-S2 and the best baseline

DKMD due to the space limitation in Figure 3. As can be seen,

our proposed MDS-S2 outperforms DKMD in the case 1 that may

involve the relation knowledge. Meanwhile, In case 2 that does

not need the complicated relation knowledge, we found that our

proposed MDS-S2 can generate the appropriate response, while

DKMD fails. One possible explanation is that our proposedMDS-S2

can promote the composed response representation learning with

the representation-level regularization.

4.3 On Dual Semantic Knowledge (RQ2)

To explore the roles of dual semantic knowledge in multimodal

dialog systems, we designed the following five derivations.

1) w/o-rel. To illustrate the importance of the relation knowledge,

we only kept the shallow attribute knowledge composition and

utilized the composed response representation T𝑡 in Eqn.(3) as

the input for Eqn.(11). 2) w/o-att. To verify the importance of

the attribute knowledge, we removed both the shallow attribute

knowledge composition and the attribute knowledge from Eqn.(11)

by using the standard BART decoder. 3) w/o-att-com. To exhibit

the necessity of the shallow attribute knowledge composition, we

disabled the attribute knowledge in Eqn.(3). 4) w/o-att-dec. To

demonstrate the necessity of incorporating the attribute knowledge

into the decoder, we replaced the knowledge revised decoder (i.e.,

B̄𝑑 ) with the original decoder of BART in Eqn.(11). 5) w/o-dual-k.

To illustrate the role of knowledge towards the textual response

generation, we removed all the attribute and relation knowledge

from our proposed MDS-S2.

Table 2 demonstrates the performance comparison between

our proposed MDS-S2 and its above derivations. From this table,

we had the following observations. 1) Our proposed MDS-S2

outperforms w/o-rel, w/o-att, and w/o-dual-k. Besides, disabling

all knowledge (i.e, w/o-dual-k) results in the worst performance.

It exhibits that removing either the attribute or the relation

knowledge will hurt the performance of MDS-S2 to some extent.

This reconfirms the superiority of considering the dual semantic

knowledge in multimodal task-oriented dialog systems. 2) Both

w/o-att and w/o-att-com perform worse than w/o-rel, suggesting

that the attribute knowledge contributes more to textual response

generation than the relation knowledge. This may be due to the fact

that in most cases, users want to learn the attribute information

of certain known entities, and the attribute knowledge is enough

for responding such cases. And 3) our proposed MDS-S2 surpasses

both w/o-att-com and w/o-att-dec. The rationale behind is that the

attribute knowledge integrated in the shallow attribute knowledge

composition can facilitate the composed response representation

learning, while that in the decoder is able to explicitly incorporate

the attribute knowledge in the decoder phrase, both benefiting the

final textual response generation.

To obtain deeper insights into the relation knowledge, we

performed the case study on the relation knowledge confidence

assignment with a testing multimodal dialog in Figure 4. Due to

the limited space, we only showed a few essential relation tuples

related to the given context. Different color shadows correspond

to different relation tuples. As we can see, towards the textual

response generation, MDS-S2 assigns the highest confidence to the

relation tuple “Clarke Quay
𝑎𝑑𝑑𝑟𝑒𝑠𝑠
−−−−−−−→ river valley rd. (north boat

quay)”, as compared to other tuples. Checking the given multimodal

context, we found that the user provides an image and wants to

find a similar place with a scenic view around Singapore River. In

this case, the address of the entity (i.e., “river valley rd. (north boat

quay)”) indicates that it may be near the river, which is instructive

for the proper response generation. In light of this, the confidence

Table 2: Ablation study results on the dual semantic

knowledge in terms of BLEU-N (%) and Nist.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Nist

w/o-rel 36.33 27.50 22.60 19.02 3.5398
w/o-att 33.58 24.80 20.16 16.93 2.9815
w/o-att-com 34.82 26.28 21.62 18.28 3.3089
w/o-att-dec 39.54 31.68 26.97 23.46 4.0662
w/o-dual-k 32.65 24.30 19.85 16.69 2.9856
MDS-S2 41.40 32.91 27.74 23.89 4.2142
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Multimodal Dialog Relation Knowledge with Confidenceselation Knowledge with Confidences

Figure 4: Illustration of the learned confidences for the

relation knowledge.

assignment of our model regarding relation tuples for the given

multimodal context is reasonable. This suggests that our model

can identify the informative relation tuples to enhance the textual

response generation in multimodal task-oriented dialog systems.

4.4 On Representation-level Regularization
(RQ3)

To thoroughly verify the effectiveness of the representation-level

regularization, we designed two derivatives. 1) w/o-regular. To

verify the importance of the representation-level regularization, we

removed it from our model. Consequently, the composed response

semantic representation will not be used. 2) w/o-sem-dec. To

exhibit the benefit of injecting the multi-level knowledge composed

response semantic representation into the BART decoder, we kept

the representation-level regularization but disabled the composed

response semantic representation integration in the decoder.

Table 3 summarizes the performance of our MDS-S2 and its

derivatives. As can be seen, our proposed MDS-S2 outperforms

w/o-regular, which suggests the necessity of conducting the

representation-level regularization in the context of multimodal

task-oriented dialog systems. Besides, we found that w/o-sem-dec

performs worse than our proposed MDS-S2. This may be due to

that the composed response semantic representation integrated

into the decoder phrase can directly promote the textual response

generation and thus enhance the performance. Thirdly, w/o-regular

underperforms w/o-sem-dec, revealing that it is reasonable to

conduct the representation-level regularization, which contributes

to regularize the composed response semantic representation to be

similar to the ground truth response semantic representation.

To intuitively reflect the effectiveness of the representation-level

regularization, we randomly sampled 2, 000 multimodal dialogs,

and visualized the multi-level knowledge composed response

representation as well as the ground truth response representation

learned by our MDS-S2 and w/o-regular with the help of tSNE [26]

in Figure 5. The red points illustrate the composed response

Table 3: Ablation study results on the representation-level

regularization in terms of BLEU-N (%) and Nist.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Nist

w/o-regular 39.13 31.28 26.54 23.02 3.9602
w/o-sem-dec 37.63 29.39 24.50 20.91 3.6561
MDS-S2 41.40 32.91 27.74 23.89 4.2142
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Figure 5: Visualization of the composed response represen-

tation distribution (red points) as well as the ground truth

response representation distribution (blue points) learned

by our MDS-S2 and its derivative w/o-regular.

representation, and the blue ones denote the ground truth response

representation. As we can see, the distribution of the multi-level

knowledge composed response representation and that of the

ground truth response representation achieved by MDS-S2 is

more consistent as compared to that obtained by w/o-regular.

This validates the effect of our proposed representation-level

regularization in capturing the meaningful information from the

composed response representation towards the textual response

generation. In addition, as for our MDS-S2, we found that there is

still a separate region where the two representation distributions

are not well aligned. Checking these samples, we learned that they

tend to involve open questions (e.g., “any tips when visiting there?”),

for which the effect of the dual semantic knowledge is limited.

5 CONCLUSION AND FUTUREWORK

In this work, we investigate the textual response generation task

in multimodal task-oriented dialog systems and propose a novel

multimodal dialog system, named MDS-S2. Extensive experiments

on a public dataset have validated the effectiveness of the proposed

MDS-S2. Interestingly, we observe that the attribute knowledge and

the relation knowledge are both conducive to the textual response

generation. Besides, the representation-level regularization does

help in guiding the composed response representation learning

with the ground truth response and should be taken into account.

As aforementioned, the public MMConv dataset covers dialogs of

multiple domains (e.g., Food, Hotel, and Shopping mall). Currently,

we did not explore the domain information of each dialog towards

the textual response generation. In the future, we plan to explore

the semantic transition among different domain topics in the

multimodal context and further enhance the response generation

performance of multimodal dialog systems.
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